Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(2): e54464, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510881

RESUMO

Gout is a metabolic disease resulting from the deposition of monosodium urate crystals in joints, tissues, and organs. Nowadays, the treatment of hyperuricemia is easily accessible and widespread and mainly consists of xanthine oxidase inhibitors and uricosurics. In refractory and advanced cases of gout, amputation surgery may be required. The authors present the case of an 85-year-old man who is non-compliant with hypouricemic medication, has exuberant gout, and has refused amputation surgery several times. The patient went to the emergency department with a triad of acute kidney injuries, acute gout, and poorly controlled pain. Cases of tophaceus gout such as the one presented are very rare nowadays.

2.
Cureus ; 15(11): e48544, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074051

RESUMO

Primary abscess of the thoracic wall is a very rare condition that occurs spontaneously due to hematogenous dissemination of bacterial, fungal, or mycobacterial pathogens, of which Mycobacterium tuberculosis is the most frequent agent. The authors describe a rare case of primary abscess of the thoracic wall. The patient presented with a painful, growing mass in the chest wall that later fistulized to the skin, draining a purulent exudate. Extensive analytical and imagiological workup was performed, showing no changes other than an expansive soft tissue formation extending from the skin surface and destructing the cartilage of the 7th right costal arch. Culture of the purulent exdudate identified Pseudomonas aeruginosa and Staphylococcus epidermidis. The patient improved under directed antibiotic treatment. The diagnosis of a primary abscess of the thoracic wall and the causative agents contribute to the rarity of this case.

3.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281196

RESUMO

Until recently, genes from the iron-sulfur (Fe-S) cluster pathway were not known to have a role in plant disease resistance. The Nitrogen Fixation S (NIFS)-like 1 (NFS1) and Mitochondrial Ferredoxin-1 (MFDX1) genes are part of a set of 27 Fe-S cluster genes induced after infection with host and nonhost pathogens in Arabidopsis. A role for AtNFS1 in plant immunity was recently demonstrated. In this work, we showed that MFDX1 is also involved in plant defense. More specifically, Arabidopsis mfdx1 mutants were compromised for nonhost resistance against Pseudomonas syringae pv. tabaci, and showed increased susceptibility to the host pathogen P. syringae pv. tomato DC3000. Arabidopsis AtMFDX1 overexpression lines were less susceptible to P. syringae pv. tomato DC3000. Metabolic profiling revealed a reduction of several defense-related primary and secondary metabolites, such as asparagine and glucosinolates in the Arabidopsis mfdx1-1 mutant when compared to Col-0. A reduction of 5-oxoproline and ornithine metabolites that are involved in proline synthesis in mitochondria and affect abiotic stresses was also observed in the mfdx1-1 mutant. In contrast, an accumulation of defense-related metabolites such as glucosinolates was observed in the Arabidopsis NFS1 overexpressor when compared to wild-type Col-0. Additionally, mfdx1-1 plants displayed shorter primary root length and reduced number of lateral roots compared to the Col-0. Taken together, these results provide additional evidence for a new role of Fe-S cluster pathway in plant defense responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ferredoxinas/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/imunologia , Resistência à Doença , Ferredoxinas/imunologia , Ferredoxinas/metabolismo , Glucosinolatos/genética , Glucosinolatos/imunologia , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Família Multigênica , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Estresse Fisiológico/genética , Enxofre/metabolismo
4.
Plant Physiol ; 184(3): 1532-1548, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943465

RESUMO

Iron-sulfur (Fe-S) clusters are inorganic cofactors that are present in all kingdoms of life as part of a large number of proteins involved in several cellular processes, including DNA replication and metabolism. In this work, we demonstrate an additional role for two Fe-S cluster genes in biotic stress responses in plants. Eleven Fe-S cluster genes, including the NITROGEN FIXATION S-LIKE1 (NFS1) and its interactor FRATAXIN (FH), when silenced in Nicotiana benthamiana, compromised nonhost resistance to Pseudomonas syringae pv. tomato T1. NbNFS1 expression was induced by pathogens and salicylic acid. Arabidopsis (Arabidopsis thaliana) atnfs and atfh mutants, with reduced AtNFS1 or AtFH gene expression, respectively, showed increased susceptibility to both host and nonhost pathogen infection. Arabidopsis AtNFS1 and AtFH overexpressor lines displayed decreased susceptibility to infection by host pathogen P syringae pv. tomato DC3000. The AtNFS1 overexpression line exhibited constitutive upregulation of several defense-related genes and enrichment of gene ontology terms related to immunity and salicylic acid responses. Our results demonstrate that NFS1 and its interactor FH are involved not only in nonhost resistance but also in basal resistance, suggesting a new role of the Fe-S cluster pathway in plant immunity.


Assuntos
Arabidopsis/imunologia , Proteínas Ferro-Enxofre/metabolismo , Nicotiana/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas Ferro-Enxofre/genética , Doenças das Plantas/genética , Nicotiana/genética , Nicotiana/microbiologia
5.
Mol Genet Genomics ; 295(3): 717-739, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124034

RESUMO

The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1, ShPAL2, ShC4H4, Sh4CL1, ShHCT1, ShC3H1, ShC3H2, ShCCoAOMT1, ShCOMT1, ShF5H1, ShCCR1, ShCAD2, and ShCAD7 are strong candidates to be bona fide lignin biosynthesis genes. Together, the results provide information about the candidate genes involved in monolignol biosynthesis in sugarcane and may provide useful information for further molecular genetic studies in sugarcane.


Assuntos
Vias Biossintéticas/genética , Lignina/biossíntese , Proteínas de Plantas/genética , Propanóis/metabolismo , Saccharum/genética , Saccharum/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Lignina/genética , Propanóis/química , Saccharum/classificação , Saccharum/crescimento & desenvolvimento
6.
Front Genet ; 10: 421, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130993

RESUMO

Gene expression data generated from multiple biological samples (mutant, double mutant, and wild-type) are often compared via Venn diagram tools. It is of great interest to know the expression pattern between overlapping genes and their associated gene pathways or gene ontology (GO) terms. We developed DiVenn (Dive into the Venn diagram and create a force directed graph)-a novel web-based tool that compares gene lists from multiple RNA-Seq experiments in a force-directed graph, which shows the gene regulation levels for each gene and integrated KEGG pathway and gene ontology knowledge for the data visualization. DiVenn has four key features: (1) informative force-directed graph with gene expression levels to compare multiple data sets; (2) interactive visualization with biological annotations and integrated pathway and GO databases, which can be used to subset or highlight gene nodes to pathway or GO terms of interest in the graph; (3) Pathway and GO enrichment analysis of all or selected genes in the graph; and (4) high resolution image and gene-associated information export. DiVenn is freely available at http://divenn.noble.org/.

7.
Plant Sci ; 279: 108-116, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30709487

RESUMO

Most potential pathogens fail to establish virulence for a plethora of plants found in nature. This intrinsic property to resist pathogen virulence displayed by organisms without triggering canonical resistance (R) genes has been termed nonhost resistance (NHR). While host resistance involves recognition of pathogen elicitors such as avirulence factors by bona fide R proteins, mechanism of NHR seems less obvious, often involving more than one gene. We can generally describe NHR in two steps: 1) pre-invasive resistance, either passive or active, which can restrict the pathogen from entering the host, and 2) post-invasive resistance, an active defense response that often results in hypersensitive response like programmed cell death and reactive oxygen species accumulation. While PAMP-triggered-immunity (PTI) is generally effective against nonhost pathogens, effector-triggered-immunity (ETI) can be effective against both host and nonhost pathogens. Prolonged interactions between adapted pathogens and their resistant host plants results in co-evolution, which can lead to new pathogen strains that can be virulent and cause disease on supposedly resistant host. In this context, engineering durable resistance by manipulating genes involved in NHR is an attractive approach for sustainable agriculture. Several genes involved in NHR have been characterized for their role in plant defense. In this review, we report genes involved in NHR identified to date and highlight a few examples where genes involved in NHR have been used to confer resistance in crop plants against economically important diseases.


Assuntos
Produtos Agrícolas/imunologia , Resistência à Doença/genética , Genes de Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Produtos Agrícolas/genética , Resistência à Doença/imunologia , Engenharia Genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética
8.
Eur J Case Rep Intern Med ; 5(4): 000808, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30756024

RESUMO

OBJECTIVES: To report a case of mechanical aortic prosthesis Brucella endocarditis successfully treated with antibiotics alone.Materials and methods: We describe a clinical case and present a review of the literature. RESULTS: A 60-year-old female farmer with a mechanical aortic prosthetic valve presented with low back pain and fever. She was diagnosed with prosthetic valve Brucella mellitensis endocarditis and was cured with antibiotic therapy alone. Few cases of successfully treated prosthetic valve Brucella endocarditis without surgery have been reported. CONCLUSION: Prosthetic valve Brucella endocarditis usually requires surgical valve replacement. However, selected patients may be successfully treated with antibiotic therapy alone. LEARNING POINTS: Brucella endocarditis is responsible for most fatal cases of brucellosis.Brucellosis relapse after treatment in patients with a cardiac valve prosthesis should arouse suspicion for endocarditis.Long-term medical treatment alone can be successful in selected patients with Brucella endocarditis, even in those with prosthetic valve endocarditis..

9.
Gene ; 642: 389-397, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29155257

RESUMO

Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon forest reserve that are probably caused by more than one environmental factors such as rhizosphere and soil depth.


Assuntos
Archaea/classificação , Bactérias/classificação , Fungos/classificação , Microbiologia do Solo , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , Fungos/genética , Fungos/isolamento & purificação , Metagenômica/métodos , Microbiota , Floresta Úmida , Rizosfera , Análise de Sequência de DNA/métodos
10.
PLoS One ; 9(12): e114119, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25436909

RESUMO

Nudix hydrolases comprise a large gene family of twenty nine members in Arabidopsis, each containing a conserved motif capable of hydrolyzing specific substrates like ADP-glucose and NADH. Until now only two members of this family, AtNUDX6 and AtNUDX7, have been shown to be involved in plant immunity. RPP4 is a resistance gene from a multigene family that confers resistance to downy mildew. A time course expression profiling after Hyaloperonospora arabidopsidis inoculation in both wild-type (WT) and the rpp4 mutant was carried out to identify differentially expressed genes in RPP4-mediated resistance. AtNUDX8 was one of several differentially expressed, downregulated genes identified. A T-DNA knockout mutant (KO-nudx8) was obtained from a Salk T-DNA insertion collection, which exhibited abolished AtNUDX8 expression. The KO-nudx8 mutant was infected separately from the oomycete pathogen Hpa and the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. The mutant displayed a significantly enhanced disease susceptibility to both pathogens when compared with the WT control. We observed a small, stunted phenotype for KO-nudx8 mutant plants when grown over a 12/12 hour photoperiod but not over a 16/8 hour photoperiod. AtNUDX8 expression peaked at 8 hours after the lights were turned on and this expression was significantly repressed four-fold by salicylic acid (SA). The expression of three pathogen-responsive thioredoxins (TRX-h2, TRX-h3 and TRX-h5) were downregulated at specific time points in the KO-nudx8 mutant when compared with the WT. Furthermore, KO-nudx8 plants like the npr1 mutant, displayed SA hypersensitivity. Expression of a key SA biosynthetic gene ICS1 was repressed at specific time points in the KO-nudx8 mutant suggesting that AtNUDX8 is involved in SA signaling in plants. Similarly, NPR1 and PR1 transcript levels were also downregulated at specific time points in the KO-nudx8 mutant. This study shows that AtNUDX8 is involved in plant immunity as a positive regulator of defense in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Pirofosfatases/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/imunologia , Pirofosfatases/genética , Tiorredoxinas/genética , Tiorredoxinas/imunologia , Nudix Hidrolases
11.
Curr Biol ; 22(2): 103-12, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22244999

RESUMO

BACKGROUND: Induction of plant immune responses involves significant transcription reprogramming that prioritizes defense over growth-related cellular functions. Despite intensive forward genetic screens and genome-wide expression-profiling studies, a limited number of transcription factors have been found that regulate this transition. RESULTS: Using the endoplasmic-reticulum-resident genes required for antimicrobial protein secretion as markers, we identified a heat-shock factor-like transcription factor that specifically binds to the TL1 (GAAGAAGAA) cis element required for the induction of these genes. Surprisingly, plants lacking this TL1-binding factor, TBF1, respond normally to heat stress but are compromised in immune responses induced by salicylic acid and by microbe-associated molecular pattern, elf18. Genome-wide expression profiling indicates that TBF1 plays a key role in the growth-to-defense transition. Moreover, the expression of TBF1 itself is tightly regulated at both the transcriptional and translational levels. Two upstream open reading frames encoding multiple aromatic amino acids were found 5' of the translation initiation codon of TBF1 and shown to affect its translation. CONCLUSIONS: Through this unique regulatory mechanism, TBF1 can sense the metabolic changes upon pathogen invasion and trigger the specific transcriptional reprogramming through its target genes expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Imunidade Inata , Fator Tu de Elongação de Peptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Fatores de Transcrição de Choque Térmico , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...